CE

EMC COMPLIANCE TEST REPORT

for

CAMERA SERVRE

Trade Name	: FORMOSA	
Model Number	: VP-100; VP-40	
Serial Number	: N/A	
Report Number	: 02E0620-E	
Date	: November 11, 2002	2
Regulations	: See below	

Standards	Results (Pass/Fail)
EN 55022: 1998	PASS
EN 61000-3-2: 1995+A1: 1998+A2: 1998+A14: 2000	PASS
EN 61000-3-3: 1995	PASS
EN 55024: 1998	PASS
- IEC 61000-4-2: 1995 +A2: 2001	PASS
- IEC 61000-4-3: 1995	PASS
- IEC 61000-4-4: 1995	PASS
- IEC 61000-4-5: 1995	PASS
- IEC 61000-4-6: 1996	PASS
- IEC 61000-4-8: 1993	N/A
- IEC 61000-4-11: 1994	PASS

Prepared for :

FORMOSA INDUSTRIAL COMPUTING, INC. 8F-6, NO. 351, CHUNG SHAN RD., SEC. 2, CHUNG HO CITY, TAIPEI, TAIWAN, R.O.C.

Prepared by :

C&C LABORATORY CO., LTD. #B1, 1st Fl., Universal Center, No. 183, Sec. 1, Tatung Rd., Hsi Chin, Taipei Hsien, Taiwan, R.O.C. TEL: (02)86422071 FAX: (02)86422256

This report shall not be reproduced, except in full, without the written approval of C&C Laboratory Co., Ltd.

EC-Declaration of Conformity

For the following equipment:

CAMERA SERVRE

(Product Name)

VP-100; VP-40 / FORMOSA

(Model Designation / Trade name)

FORMOSA INDUSTRIAL COMPUTING, INC.

(Manufacturer Name)

8F-6, NO. 351, CHUNG SHAN RD., SEC. 2, CHUNG HO CITY, TAIPEI, TAIWAN, R.O.C.

(Manufacturer Address)

is herewith confirmed to comply with the requirements set out in the Council Directive on the Approximation of the Laws of the Member States relating to Electromagnetic Compatibility Directive (89/336/EEC, Amended by 92/31/EEC, 93/68/EEC & 98/13/EC), For the evaluation regarding the Electromagnetic Compatibility (89/336/EEC, Amended by 92/31/EEC & 93/68/EEC & 98/13/EC) the following standards are applied:

V		
---	--	--

EN 55022: 1998

EN 61000-3-2: 1995+A1: 1998+A2: 1998+A14: 2000

V EN 61000-3-3: 1995

V EN 55024: 1998

IEC 61000-4-2: 1995 +A2: 2001, IEC 61000-4-3: 1995, IEC 61000-4-4: 1995

IEC 61000-4-5: 1995, IEC 61000-4-6: 1996, IEC 61000-4-11: 1994

The following manufacturer / importer or authorized representative established within the EUT is responsible for this declaration:

(Company Name)

(Company Address)

Person responsible for making this declaration:

(Name, Surname)

(Position / Title)

(Place)

(Date)

(Legal Signature)

TABLE OF CONTENTS

	DESCRIPTION	PAGE			
VERIFICATIO	ON OF COMPLIANCE	5			
GENERAL IN	FORMATION	6			
SYSTEM DES	CRIPTION	7			
PRODUCT IN	FORMATION	8			
SUPPORT EQ	UIPMENT	9			
TEST FACILI	ГҮ	10			
TEST EQUIPN	/IENT	11			
SECTION 1	EN 55022(LINE CONDUCTED & RADIATED EMISSION)	14			
	ENT PROCEDURE & LIMIT (LINE CONDUCTED EMISSION TEST)	14			
MEASUREME	ENT PROCEDURE & LIMIT (COMMON MODE CONDUCTED EMISSION MEASUREMENT)	16			
MEASUREME	CONDUCTED EMISSION MEASUREMENT) MEASUREMENT PROCEDURE & LIMIT (RADIATED EMISSION TEST)				
BLOCK DIAG	19				
SUMMARY D	DATA	20			
SECTION 2	EN61000-3-2 & EN 61000-3-3 (POWER HARMONICS & VOLTAGE FLUCTUATION/FLICKER)	22			
BLOCK DIAG	RAM OF TEST SETUP	22			
RESULT		22			
SECTION 3	IEC 61000-4-2 (ELECTROSTATIC DISCHARGE)	33			
BLOCK DIAG	RAM OF TEST SETUP	33			
TEST PROCE	DURE	34			
PERFORMAN	CE & RESULT	34			
SECTION 4	IEC 61000-4-3 (RADIATED ELECTROM	35			
	AGNETIC FIELD)				
BLOCK DIAG	RAM OF TEST SETUP	35			
TEST PROCE	DURE	36			
PERFORMAN	CE & RESULT	37			

	DESCRIPTION	PAGE
SECTION 5	IEC 61000-4-4 (FAST TRANSIENTS/BURST)	38
BLOCK DIAG	RAM OF TEST SETUP	38
TEST PROCE	DURE	39
PERFORMAN	CE & RESULT	39
SECTION 6	IEC 61000-4-5 (SURGE IMMUNITY)	40
BLOCK DIAG	RAM OF TEST SETUP	40
TEST PROCE	DURE	41
PERFORMAN	CE & RESULT	41
SECTION 7	IEC 61000-4-6 (CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS)	42
BLOCK DIAG	RAM OF TEST SETUP	42
TEST PROCE	DURE	43
	CE & RESULT	44
SECTION 8	IEC 61000-4-8 (POWER FREQUENCY MAGNETIC FIELD)	45
BLOCK DIAG	45	
TEST PROCE	46	
PERFORMAN	46	
SECTION 9	IEC 61000-4-11 (VOLTAGE DIP/INTERRUPTION)	47
BLOCK DIAG	RAM OF TEST SETUP	47
TEST PROCE	DURE	48
PERFORMAN	CE & RESULT	48
APPENDIX 1	PHOTOGRAPHS OF TEST SETUP EN 55022 TEST EN 61000-3-2 TEST EN 61000-3-3 TEST IEC 61000-4-2 TEST IEC 61000-4-3 TEST IEC 61000-4-4 TEST IEC 61000-4-5 TEST IEC 61000-4-6 TEST IEC 61000-4-11 TEST	49
APPENDIX 2	PHOTOGRAPHS OF EUT	59
APPENDIX 3	CONDUCTED EMISSION PLOT & RADIATED	65
	EMISSION DATA	

VERIFICATION OF COMPLIANCE

Equipment Under Test:	CAMERA SERVRE							
Trade Name:	FORMO	SA						
Model Number:	VP-100;	VP-40						
Serial Number:	N/A							
Applicant:	8F-6, NC		COMPUTING, INC. AN RD., SEC. 2, CHUN	G HO CITY,				
Manufacturer:			COMPUTING, INC.	a				
	,). 351, CHUNG SHA TAIWAN, R.O.C.	AN RD., SEC. 2, CHUN	G HO CITY,				
Type of Test:	,	rective 89/336/EEC f	for CE Marking					
Technical Standards:	EN 55022: 1998 EN 61000-3-2: 1995+A1: 1998+A2: 1998+A14: 2000 EN 61000-3-3: 1995 EN 55024: 1998 (IEC 61000-4-2: 1995 +A2: 2001, IEC 61000-4-3: 1995 IEC 61000-4-4: 1995, IEC 61000-4-5: 1995 IEC 61000-4-6: 1996, IEC 61000-4-11: 1994)							
File Number:								
Date of test:	Novemb	er 10, 2002						
Deviation:	N/A							
Condition of Test Sample:	Normal							
Final Result:	Pass							
Worst data:	See below	W						
	q.(MHz)	Measured data	Margin (Mì C)	Remark				
Radiated Emission 222.1		26.93 (dBì V/m)	-3.07dB (±3.3308dB)	Horizontal				
 The negative sign in Mar This test result traceable 	0	1		• The negative sign in Margin cell means under the specific limit.				

The above equipment was tested by C&C Laboratory Co., Ltd. for compliance with the requirements set forth in EMC Directive 89/336/EEC and the Technical Standards mentioned above. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment and the level of the immunity endurance of the equipment are within the compliance requirements.

The test results of this report relate only to the tested sample identified in this report.

Approved by Authorized Signatory:

Vince Chinag For.

James Chan / Manager

GENERAL INFORMATION

Applicant:	FORMOSA INDUSTRIAL COMPUTING, INC. 8F-6, NO. 351, CHUNG SHAN RD., SEC. 2, CHUNG HO CITY, TAIPEI, TAIWAN, R.O.C.
Contact Person:	Peter Wu/ Engineer
Manufacturer:	FORMOSA INDUSTRIAL COMPUTING, INC. 8F-6, NO. 351, CHUNG SHAN RD., SEC. 2, CHUNG HO CITY, TAIPEI, TAIWAN, R.O.C.
File Number:	02Е0620-Е
Date of Test:	November 10, 2002
Equipment Under Test:	CAMERA SERVRE
Trade Name:	FORMOSA
Model Number:	VP-100; VP-40
Serial Number:	N/A
Type of Test:	EMC Directive 89/336/EEC for CE Marking
Technical Standards:	EN 55022: 1998 EN 61000-3-2: 1995+A1: 1998+A2: 1998+A14: 2000 EN 61000-3-3: 1995 EN 55024: 1998 (IEC 61000-4-2: 1995 +A2: 2001, IEC 61000-4-3: 1995 IEC 61000-4-4: 1995, IEC 61000-4-5: 1995 IEC 61000-4-6: 1996, IEC 61000-4-11: 1994)
Frequency Range (EN 55022):	150kHz to 30MHz for Line Conducted Test 30MHz to 1000MHz for Radiated Emission Test
Test Site:	C&C LABORATORY CO., LTD. No. 199, Chung Sheng Road, Hsin Tien City, Taipei Taiwan, R. O. C.

SYSTEM DESCRIPTION

EUT Test Procedure:

- 1. Plug the "Network DVR on Chip" in IDE1 connector.
- 2. Connect the EUT and DVD.
- 3. Then the system will auto run.
- 4. Select the "F1" item.

PRODUCT INFORMATION

Housing Type:	N/A		
EUT Power Rating:	DC 5V from Host Computer		
AC power during Test:	230VAC, 50Hz to Host PC Power Supply		
Power Supply Manufacturer:	SNAKE		
Power Supply Model Number:	KYP-250ATX		
AC Power Cord Type:	Unshielded, 1.8m (Detachable)		
EUT I/O Cable Type:	 One to Two RCA Cable X 1 Unshielded, 0.1m (Detachable) One to Two RCA Cable X 2 Unshielded, 0.1m (Detachable); with a core Power Cable Unshielded, 0.4m (Detachable) 		
OSC/Clock Frequency:	28.636MHz		

Model Differences:

	Model Name	Differences	Tested (Checked)
Original	VP-100	– For Marketing Needs	\boxtimes
Additional	VP-40	Tor Marketing Needs	

I/O Port of EUT:

I/O PORT TYPES	Q' TY	TESTED WITH	
1). BNC PORT (AV IN)	4	4	

Note: N/A

SUPPORT EQUIPMENT

Host PC Devices:

No	Equipment	Model	Serial	FCC/BSMI	Trade Name
		#	#	ID	
1.	HDD	ST340016A	3HR0ZT2A	BSMI ID: 3902B322 33016	Seagate
2.	Power	KYP-250ATX	N/A	BSMI ID: 3872A449	SNAKE
3.	CD/R	CD-540E	4866830	DoC BSMI ID: 3892A885	TEAC
4.	Floppy Disk	D353M3	N/A	62007003	MITSUMI
5.	CPU (2.53GHz)	P4	N/A	N/A	INTEL
6.	RAM(256MB)	MPMB62D-68KX3	220155	N/A	KINGMAX
7.	M/B	P4S8X	N/A	DoC	ASUS
8.	VGA Card	V7100MAGIC/PU RE/32M/SD/T	19CK11266	DoC 41017048	ASUS

Peripherals Devices:

No	Equipment	Model	Serial	FCC/BSMI	Trade	Data	Power
		#	#	ID	Name	Cable	Cord
1.	DVD	DS-8319	AQ32301001400	N/A	ABOSS	N/A	Unshielded, 1.8m
2.	PS/2 Mouse	M-S34	LZE12352345	DZL211029 BSMI ID: 4862A011	LOGITECH	Shielded, 1.9m	N/A
12	PS/2 Keyboard	6311-TW4C/6	N/A	BSMI ID: 4862A064	ACER	Shielded, 1.7m	N/A
4.	Modem	1414	N/A	IFAXDM1414	ACEEX	Shielded, 1.0m	Unshielded, 1.8m
5.	Monitor	1900FP	N/A	DoC BSMI ID: 3902C877	DELL	Shielded, 1.8m with two cores	Unshielded, 1.8m
6.	Printer	EPSONSTYL USC20SX	EW4E126644	BSMI ID: 3902E004	EPSON	Shielded, 1.8m	Unshielded, 1.8m

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals.

Grounding: Grounding was in accordance with the manufacturer's requirements and conditions for the intended use.

TEST FACILITY

Location:	No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R. O. C.
Description:	There are two 3/10m open area test sites and one line conducted lab for final test. The Open Area Test Sites and the Line Conducted labs are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 1992 and CISPR 22/EN 55022 requirements.
Site Filing:	A site description is on file with the Federal Communications Commission, 7435 Oakland Mills Road, Columbia, MD 21046.
	Registration also was made with Voluntary Control Council for Interference (VCCI).
Site Accreditation:	Accredited by A2LA (Certificate #: 824.01) for EMC.
	Also accredited by BSMI for the product category of Information Technology Equipment.
Instrument Tolerance:	All measuring equipment is in accord with ANSI C63.4 and CISPR 22 requirements that meet industry regulatory agency and accreditation agency requirement.

Ground Plane: Two conductive reference ground planes were used during the Line Conducted Emission, one in vertical and the other in horizontal. The dimensions of these ground planes are as below. The vertical ground plane was placed distancing 40 cm to the rear of the wooden test table on where the EUT and the support equipment were placed during test. The horizontal ground plane projected 50 cm beyond the footprint of the EUT system and distanced 80 cm to the wooden test table. For Radiated Emission Test, one horizontal conductive ground plane extended at least 1m beyond the periphery of the EUT and the largest measuring antenna, and covered the entire area between the EUT and the antenna. It has no holes or gaps having longitudinal dimensions larger than one-tenth of a wavelength at the highest frequency of measurement up to 1GHz.

TEST EQUIPMENT LIST (EMISSION)

Instrumentation: The following list contains equipment used at C & C Laboratory Co., Ltd. for testing. The equipment conforms to the CISPR 16-1 / ANSI C63.2-1988 Specifications for Electromagnetic Interference and Field Strength Instrumentation from 9kHz to 1.0 / 2.0 GHz.

Equipment used during the tests:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL. DUE
EMC ANALYZER	HP	8595EM	3412A00104	03/01/02	02/28/03
AMPLIFIER	HP	8447DB	1644A02328	05/05/02	05/04/03
ANTENNA	SCHWARZBECK	VULB 9160	3104	05/12/02	05/11/03
CABLE	BELDEN	9913	N-TYPE08	04/17/02	04/16/03

Open Area Test Site: #D

Conducted Emission Test Site: Conducted Room

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL. DUE
TEST RECEIVER	R&S	ESHS20	840455/006	03/16/02	03/15/03
LISN	EMCO	3825/2	1842	01/11/02	01/10/03
LISN(EUT)	EMCO	3825/2	1435	01/16/02	01/15/03

The calibrations of the measuring instruments, including any accessories that may effect such calibration, are checked frequently to assure their accuracy. Adjustments are made and correction factors applied in accordance with instructions contained in the manual for the measuring instrument.

TEST EQUIPMENT LIST

For Power Harmonic & Voltage Fluctuation/Flicker Measurement:

Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due
HP / Harmonic & Flicker Tester	6842A	3531A-000142	06/18/2002	06/17/2003

For ESD test:

Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due
Schaffner / ESD Simulator	NSG 432	2029	02/06/2002	02/05/2003

For Radiated Electromagnetic Field immunity Measurement:

Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due
R&S / Signal Generator	SMY 02	DE13751	01/10/2002	01/09/2003
IFI /	EFS-5	713-0695	06/28/2002	06/27/2003
"E" Field sensor/ Light				
Modulator Transmitter				
IFI / Combination Amplifier	SMX100	2067-1196	No Calibration	No Calibration
_			Required	Required
IFI / Leveling Pre-Amplifier	LPA-5B	714-0695	No Calibration	No Calibration
			Required	Required
EMCO / Biconilog Antenna	3142	9609-1087	No Calibration	No Calibration
			Required	Required

For Fast Transients/Burst test:

Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due
KeyTek Instruments /	E421	9502326	10/01/2002	09/30/2003
EFT Generator				
KeyTek Instruments /	CCL-4	9503290	No Calibration	No Calibration
Capacitive Clamp			Required	Required

For Surge Immunity test:

Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due
KeyTek Instruments/	E501	9502324	10/01/2002	09/30/2003
Surger Generator				
Telecom Lines Coupler	CM-TELCD	0104399	No Calibration	No Calibration
DECOUPLER			Required	Required
KeyTek Instruments				
I/O Signal Line	CM-I/OCD	0103234	No Calibration	No Calibration
DECOUPLER			Required	Required
KeyTek Instruments				

For CS test:

Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due
R&S / Signal Generator	SMY 02	DE13751	01/10/2002	01/09/2003
IFI / Combination Amplifier	SMX100	2067-1196	No Calibration	No Calibration
			Required	Required
IFI / Leveling Pre-Amplifier	LPA-5B	714-0695	No Calibration	No Calibration
			Required	Required
FISCHER /	FCC-801-M3-16A	99122	11/02/2002	11/01/2003
Power Line Coupling				
Decoupling Network				
FISCHER /	F-120-9B	54	11/02/2002	11/01/2003
Bulk Current Injection Probe				
Narda /	769-6	02541	No Calibration	No Calibration
High Power Attenuator			Required	Required

For Power Frequency Magnetic Field test :

Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due
Haefely /	MAG 100.1	MAG 100.1 081436-02 No Calibr		No Calibration
Magic Field Tester			Required	Required
Extech Electronics /	CFC-105	810390	No Calibration	No Calibration
Frequency Converter			Required	Required
CHY/	932C	2K0900285	10/24/2002	10/23/2003
AC/DC Clamp Meter				

For Voltage Dips/Short Interruption and Voltage Variation Immunity test:

Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due
Haefely /	PLINE 1610	081568-06	081568-06 04/25/2002	
Dips/Inerruption/Variations				
Tester				
FLUKE /	79-II	66400868	07/02/2002	07/01/2003
79 Series Ii Multimeter				

SECTION 1 EN 55022 (LINE CONDUCTED & RADIATED EMISSION)

MEASUREMENT PROCEDURE (PRELIMINARY LINE CONDUCTED EMISSION TEST)

- 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55022 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per EN 55022.
- 3) All I/O cables were positioned to simulate typical actual usage as per EN 55022.
- The EUT received DC 5V power through Host PC and Line Impedance Stabilization Network (LISN) which supplied power source of 230VAC/ 50Hz and was grounded to the ground plane.
- 5) All support equipment received power from a second LISN supplying power of 110VAC/60Hz, if any.
- 6) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7) Analyzer / Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- 8) During the above scans, the emissions were maximized by cable manipulation.
- The following test mode(s) were scanned during the preliminary test: Mode:

1 Normal Mode

10) After the preliminary scan, we found the following test mode producing the highest emission level.

Mode: 1.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

MEASUREMENT PROCEDURE (FINAL LINE CONDUCTED EMISSION TEST)

1) EUT and support equipment was set up on the test bench as per step 10 of the preliminary test.

- 2) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Q.P. mode, then the emission signal was re-checked using an A.V. detector.
- 3) The test data of the worst case condition(s) was reported on the Summary Data page.

Data Sample:

	Meter		Corrected			Reading	
Freq	Reading	C.F.	Reading	Limits	Margin	Туре	Line
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	(P/Q/A)	(L1/L2)
X.XX	X.XX	X.XX	38.38	56.00	-17.62	Р	L1

C.F.(Correction Factor)=Insertion Loss + Cable Loss Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits

P=Peak Reading	L1=Hot
Q=Quasi-peak	L2=Neutral
A=Average Reading	

Comments: N/A Calculation example:

Margin(dB) = Corrected Reading(dBuV) - Limit(dBuV)

LINE CONDUCTED EMISSION LIMIT (EN 55022)

Frequency	Maximum RF Line Voltage			
	Q.P.	AVERAGE		
150kHz-500kHz	66-56dBuV	56-46dBuV		
500kHz-5MHz	56dBuV	46dBuV		
5MHz-30MHz	60dBuV	50dBuV		

Note: The lower limit shall apply at the transition frequency.

MEASUREMENT PROCEDURE (COMMON MODE CONDUCTED EMISSION MEASUREMENT)

- 1) Selecting ISN for unscreened cable or a current probe for screened cable to take measurement.
- 2) The port of the EUT was connected to the remote side support equipment through the ISN/Current Probe and communication in normal condition.
- 3) Making a overall range scan by using the test receiver controlled by controller and record at least six highest emissions for showing in the test report.
- 4) Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- 5) In case of measuring on the screened cable, the current limit shall be applied, otherwise the voltage limit should be applied.
- 6) The following test mode(s) were scanned during the preliminary test: Mode: N/A (EUT no any Telecommunicate Port)
- 7) After the preliminary scan, we found the following test mode(s) producing the highest emission level and test date of the worst case was reported on the summary data page. Mode: N/A

Data Sample:

Freq	Meter Reading	C.F.	Corrected Reading	Limits	Margin	Reading Type
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	(P/Q/A)
X.XX	X.XX	X.XX	59.26	74.00	-14.74	Р

C.F.(Correction Factor)=Insertion Loss (9.5dB) + Cable Loss Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits

Naighi–Corrected Reading - Linits

P=Peak Reading Q=Quasi-peak

A=Average Reading

Comments: N/A

COMMON MODE CONDUCTED EMISSION LIMIT AT TELECOMMUNICATION PORTS

CE-Mark (EN 55022:1998)								
CLASS	Measuring	Voltage lir	nit dB(uV)	Current	limit dB(uA)			
	Band	Q.P.	AV	Q.P.	AV			
В	150kHz-500kHz	84-74	74-64	40-30	30-20			
D	500kHz-30MHz	74	64	30	20			

Note: The lower limit shall apply at the transition frequency.

MEASUREMENT PROCEDURE (PRELIMINARY RADIATED EMISSION TEST)

- 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane as per EN 55022 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per EN 55022.
- 3) All I/O cables were positioned to simulate typical actual usage as per EN 55022.
- 4) The EUT received DC 5V power source from Host PC Power Supply (230VAC/50Hz) to the outlet socket under the turntable. All support equipment received 110VAC/60Hz power from another socket under the turntable, if any.
- 5) The antenna was placed at 10 meter away from the EUT as stated in EN 55022. The antenna connected to the analyzer via a cable and at times a pre-amplifier would be used.
- 6) The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- 7) The following test mode(s) were scanned during the preliminary test:

Mode:

1 Normal Mode

8) After the preliminary scan, we found the following test mode(s) producing the highest emission level.

Mode: 1.

Then, the EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for final testing.

MEASUREMENT PROCEDURE (FINAL RADIATED EMISSION TEST)

- 1) EUT and support equipment were set up on the turntable as per step 8 of the preliminary test.
- 2) The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- 3) Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Peak reading is presented. If EUT emission level was less-2dB to the limit, then the emission signal was re-checked using a Q.P. detector.
- 4) The test data of the worst case condition(s) was reported on the Summary Data page.

Data Sample:

	Meter		Corrected			Reading	
Freq	Reading	C.F.	Reading	Limits	Margin	Туре	Pol.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	P/Q/A	H/V
X.XX	X.XX	X.XX	30.82	37.00	-6.18	Р	V

C.F.(Correction Factor)=Antenna Factor + Cable Loss + Attenuator(3/6dB) - Amplifier Gain Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits

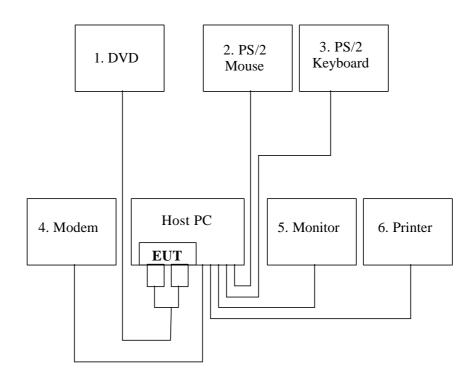
P=Peak Reading Q=Quasi-peak A=Average Reading H=Horizontal Polarization/Antenna V=Vertical Polarization/Antenna

Comments: **N/A** Calculation example:

> Margin (dB) = Corrected Reading (dBuV/m) – Limits (dBuV/m) Corrected Reading (dBuV/m)=Metering Reading (dBuV) + Corr Factor (dB/m)

RADIATED EMISSION LIMIT

Frequency (MHz)	Distance (m)	Maximum Field Strength Limit (dBu V/m/ Q.P.)
30-230	10	30
230-1000	10	37


Note: The lower limit shall apply at the transition frequency.

BLOCK DIAGRAM OF TEST SETUP

System Diagram of Connections between EUT and Simulators

EUT: CAMERA SERVRE

Trade Name: FORMOSA Model Number: VP-100

SUMMARY DATA (LINE CONDUCTED TEST)

Model Number: VP-100

Location: Conducted Room

Tested by: John Yen

Test Model: Mode 1

Test Results: Passed

Temperature: 23

Humidity: 76%RH

Frequency Range Investigated (150 kHz TO 30 MHz)								
	Meter		Corrected			Reading		
Freq	Reading	C.F.	Reading	Limits	Margin	Type	Line	
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	(P/Q/A)	(L1/L2)	
0.516	47.57	0.07	47.64	56.00	-8.36	Р	L1	
0.516	35.73	0.07	35.80	46.00	-10.20	Α	L1	
0.771	47.12	0.09	47.21	56.00	-8.79	Р	L1	
0.771	35.99	0.09	36.08	46.00	-9.92	Α	L1	
0.153	60.93	0.03	60.96	65.82	-4.86	Р	L2	
0.153	52.78	0.03	52.81	55.82	-3.01	Α	L2	
0.213	55.22	0.03	55.25	63.10	-7.84	Р	L2	
0.213	44.41	0.03	44.44	53.10	-8.65	Α	L2	
0.273	52.28	0.05	52.33	61.03	-8.70	Р	L2	
0.273	41.25	0.05	41.30	51.03	-9.73	Α	L2	
0.516	47.57	0.07	47.64	56.00	-8.36	Р	L2	
0.516	32.59	0.07	32.66	46.00	-13.34	Α	L2	

(The chart below shows the highest readings taken from the final data)

C.F.(Correction Factor)=Insertion Loss + Cable Loss

Corrected Reading = Metering Reading + C.F.

Margin=Corrected Reading - Limits

Q=Quasi-peak L2=Neutral

A=Average Reading

Comments: N/A

SUMMARY DATA (RADIATED EMISSION TEST)

Model Number: VP-100

Location: Site # D

Tested by: John Yen

Test Mode: Mode 1

Test Results: Passed

Temperature: 25

Humidity: 74%RH

(The chart below shows the highest readings taken from the final data)

	Frequency Range Investigated (30 MHz TO 1000 MHz)							
	Meter		Corrected			Reading		
Freq	Reading	C.F.	Reading	Limits	Margin	Туре	Pol.	
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	P/Q/A	H/V	
129.030	34.62	-8.22	26.40	30.00	-3.60	Р	V	
224.380	34.73	-8.71	26.02	30.00	-3.98	Р	V	
269.987	40.59	-7.10	33.48	37.00	-3.52	Q	V	
453.200	33.33	0.36	33.69	37.00	-3.31	Р	V	
222.130	35.77	-8.84	26.93	30.00	-3.07	Р	Η	
454.080	32.67	0.37	33.04	37.00	-3.96	Р	H	

C.F.(Correction Factor)=Antenna Factor + Cable Loss - Amplifier Gain (+ Attenuator 6dB)

Corrected Reading = Metering Reading + C.F.

Margin=Corrected Reading - Limits

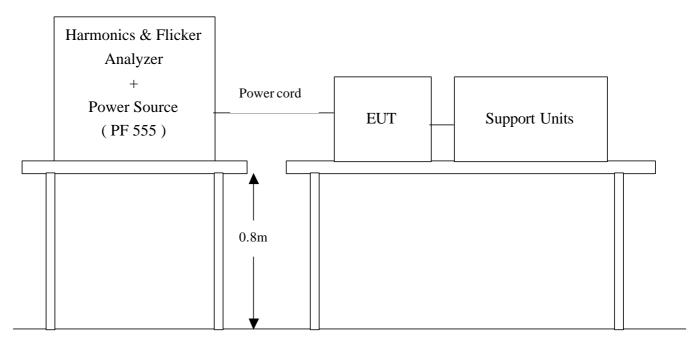
P=Peak Reading H=Horizontal Polarization/Antenna

Q=Quasi-peak V=Vertical Polarization/Antenna

A=Average Reading

Comments: N/A

SECTION 2 EN 61000-3-2 & EN 61000-3-3 (POWER HARMONICS & VOLTAGE FLUCTUATION / FLICKER)


POWER HARMONICS MEASUREMENT

Port	: AC mains
Basic Standard	: EN 61000-3-2 (1995+A1: 1998+A2: 1998 + A14: 2000)
Limits	Class A, V Class D
Temperature	: 23 ⁰ C
Humidity	: 58%
Test By	: John Yen

VOLTAGE FLUCTUATION/FLICKER MEASUREMENT

Port	: AC mains
Basic Standard	: EN 61000-3-3 (1995)
Limits	: § 5 of EN 61000-3-3
Temperature	: 23 [°] C
Humidity	: 58%
Test By	: John Yen

Block Diagram of Test Setup:

Result:

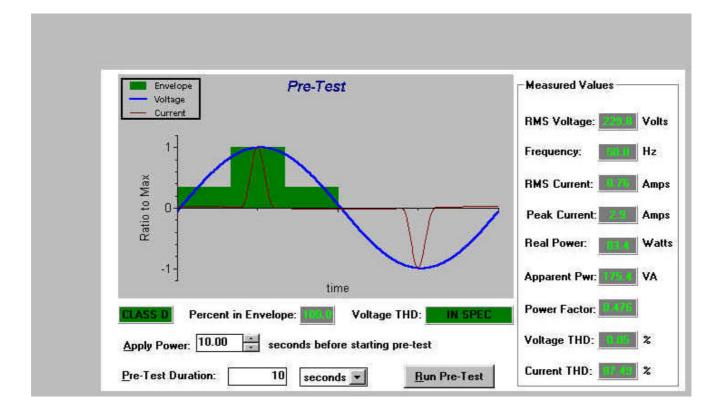
Please see the attached test data.

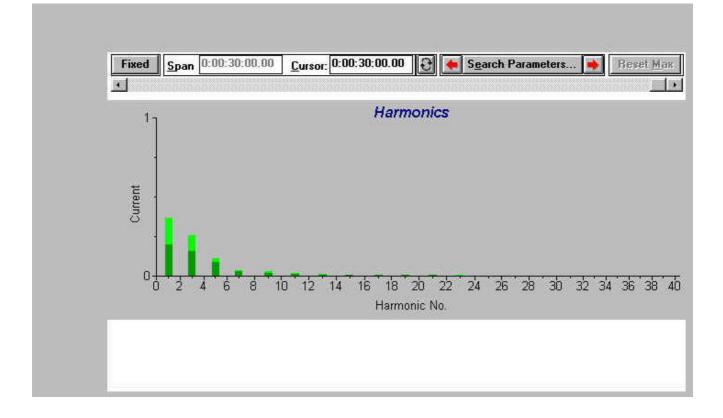
Huang X1, 02 Bill Approved by: len _ Date: 11. 10. 02 John Signature: Final Test Result: PASS Settings and Test Conditions Compliant to the Standard: Yes Test Equipment Used: Agilent 6842A Harmonic/Flicker Test System with serial number: HFTS Software Version: A.05.03 Date Last Calibrated: Test Equipment Settings: Line Voltage: 230.00 V Current Measurement Range: High Line Frequency: 50 Hz Measurement Window Type: Rectangular Device Class: D Measurement Delay: 10 seconds RMS Current Limit: 13.1 A Peak Current Limit: 80.8 A Number of Records: 5625 Quasi-stationary Test Duration: 30.00 minutes Class Determination Pre-test Duration: 10.00 seconds Overrides: ----Test Limit Source (Power Measurements/Statistics): Maximum Power Overrides: None Test Limit Overrides: None Pre-test Results for Class Determination: Percent in Envelope: 100.0% Voltage THD Out-of-Specification?: No Class D Equipment?: Yes Fundamental Current: 0.368 A RMS Voltage: 229.8 V RMS Current: 0.8 A Real Power: 83.4 W 50.0 Hz Apparent Power: 175.4 VA Peak Current: 2.9 A Frequency: Voltage THD: 0.05% Current THD: 87.49% Power Factor: 0.476 Maximum Power: 83.4 W Mean Power: 83.4 W Active Power Statistics: 100th Percentile: 83.4 W 99th Percentile: 83.4 W 95th Percentile: 83.4 90th Percentile: 83.4 W 50th Percentile: 83.4 W Total Number of Failures: Total Number of Errors: -------None None

Pre-Test	Source	Voltage	Harmonics	Data:

Harmonic Number	Limit (%)	Limit (Volts)	Max (%)	Max (Volts)	
			1 100 100, 100 and 100 100 100 100		
Fund.			100.0	229.854	
2	0.20	0.460	0.006	0.014	
3	0.90	2.069	0.012	0.027	
4	0.20	0.460	0.004	0.010	
4 5 6	0.40	0.919	0.019	0.043	
6	0.20	0.460	0.002	0.004	
7	0.30	0.690	0.018	0.041	
8	0.20	0.460	0.002	0.004	
9	0.20	0.460	0.022	0.050	
10	0.20	0.460	0.003	0.006	
11	0.10	0.230	0.020	0.046	
12	0.10	0.230	0.002	0.005	
13	0.10	0.230	0.018	0.042	
14	0.10	0.230	0.002	0.004	
15	0.10	0.230	0.013	0.030	
16	0.10	0.230	0.003	0.007	
17	0.10	0.230	0.013	0.029	
18	0.10	0.230	0.003	0.008	
19	0.10	0.230	0.005	0.015	
20	0.10	0.230	0.001	0.002	
21	0.10	0.230	0.005	0.012	
22	0.10	0.230	0.003	0.007	
23	0.10	0.230	0.006	0.014	
24	0.10	0.230	0.001	0.002	
25	0.10	0.230	0.005	0.011	
26	0.10	0.230	0.002	0.004	
27	0.10	0.230	0.009	0.021	
28	0.10	0.230	0.001	0.001	
29	0.10	0.230	0.005	0.013	
30	0.10	0.230	0.003	0.007	
31	0.10	0.230	0.006	0.013	
32	0.10	0.230	0.001	0.003	
33	0.10	0.230	.0.002	0.004	
34	0.10	0.230	0.001	0.002	
35	0.10	0.230	0.001	0.003	
36	0.10	0.230	0.003	0.007	
37	0.10	0.230	0.004	0.008	
38	0.10	0.230	0.002	0.004	
39	0.10	0.230	0.004	0.008	
40	0.10	0.230	0.001	0.001	

Final Test Data:


Fund. 2 3 0 4 5 0 6 7 0 8 9 0. 10 11 0 12 13 0 14 15 0 16 17 0. 18 19 0 20 21 0 24 0 24 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2837 0.1585 0.0834 0.0417 0.0292 0.0247 0.0214 0.0214	(A rms) 0.3669 0.0014 0.2579 0.0018 0.1117 0.0014 0.0341 0.0010 0.0287 0.0006 0.0147 0.0003 0.0125 0.0003 0.0125 0.0003 0.0083 0.0004 0.0069	(% Limit) 90.9 70.5 40.8 68.7 50.3 50.7 38.7	0.2047 0.0002 0.1584 0.0001 0.0869 0.0001 0.0308 0.0001 0.0175 0.0001 0.0142 0.0001 0.0076 0.0001	(% Limit) 55.9 54.8 36.9 41.9 48.6 30.7		(% Limit) 4.5 2.2 0.4 3.7 0.4 2.2	5 5 5 5	
2 3 0 4 5 0 6 7 0 8 9 0 10 11 0 12 13 0 14 15 0 16 17 0 18 19 0 21 0 22 23 0 24	0.1585 0.0834 0.0417 0.0292 0.0247 0.0214	0.0014 0.2579 0.0018 0.1117 0.0014 0.0341 0.0010 0.0287 0.0006 0.0147 0.0003 0.0125 0.0003 0.0083 0.0083	70.5 40.8 68.7 50.3 50.7	0.0002 0.1584 0.0001 0.0869 0.0001 0.0308 0.0001 0.0175 0.0001 0.0142 0.0001 0.0076 0.0001	54.8 36.9 41.9 48.6	0.0001 0.0127 0.0001 0.0034 0.0003 0.0003 0.0001 0.0015 0.0000 0.0001 0.0001	2.2 0.4 3.7 0.4	5 5 5	
3 0 4 5 0 6 7 0 9 0 10 11 0 11 12 13 0 14 15 0 16 17 0 18 19 0 20 21 0 22 23 0 24 24 0	0.1585 0.0834 0.0417 0.0292 0.0247 0.0214	0.2579 0.0018 0.1117 0.0014 0.0341 0.0010 0.0287 0.0006 0.0147 0.0003 0.0125 0.0003 0.0125 0.0003 0.0083 0.0004	70.5 40.8 68.7 50.3 50.7	0.1584 0.0001 0.0869 0.0001 0.0308 0.0001 0.0175 0.0001 0.0142 0.0001 0.0076 0.0001	54.8 36.9 41.9 48.6	0.0127 0.0001 0.0034 0.0003 0.0003 0.0001 0.0015 0.0000 0.0001 0.0001	2.2 0.4 3.7 0.4	5 5 5	
4 5 0 8 9 0 10 11 0 12 13 0 14 15 0 14 15 0 16 17 0 18 19 0 20 21 0 22 23 0 24	0.1585 0.0834 0.0417 0.0292 0.0247 0.0214	0.0018 0.1117 0.0014 0.0341 0.0010 0.0287 0.0006 0.0147 0.0003 0.0125 0.0003 0.0125 0.0003 0.0083 0.0083	70.5 40.8 68.7 50.3 50.7	0.0001 0.0869 0.0001 0.0308 0.0001 0.0175 0.0001 0.0142 0.0001 0.0076 0.0001	54.8 36.9 41.9 48.6	0.0001 0.0034 0.0003 0.0003 0.0001 0.0015 0.0000 0.0001 0.0001	2.2 0.4 3.7 0.4	5 5 5	
5 0 6 7 0 8 9 0 10 11 0 12 13 0 13 0 14 15 0 16 17 0 18 19 0 22 21 0 22 23 0 24	0.0834 0.0417 0.0292 0.0247 0.0214	0.1117 0.0014 0.0341 0.0010 0.0287 0.0006 0.0147 0.0003 0.0125 0.0003 0.0083 0.0083	40.8 68.7 50.3 50.7	0.0869 0.0001 0.0308 0.0001 0.0175 0.0001 0.0142 0.0001 0.0076 0.0001	36.9 41.9 48.6	0.0034 0.0001 0.0003 0.0001 0.0015 0.0000 0.0001 0.0000	0.4 3.7 0.4	P P P	
6 7 0 8 9 0 11 0 12 13 0 14 15 0 16 17 0 18 19 0 20 21 0 22 23 0 24	0.0834 0.0417 0.0292 0.0247 0.0214	0.0014 0.0341 0.0010 0.0287 0.0006 0.0147 0.0003 0.0125 0.0003 0.0083 0.0083	40.8 68.7 50.3 50.7	0.0001 0.0308 0.0001 0.0175 0.0001 0.0142 0.0001 0.0076 0.0001	36.9 41.9 48.6	0.0001 0.0003 0.0001 0.0015 0.0000 0.0001 0.0001	0.4 3.7 0.4	P P P	
7 0 8 9 0 10 11 0 12 13 0 14 15 0 16 17 0 18 19 0 20 21 0 22 2 23 0 24	0.0417 0.0292 0.0247 0.0214	0.0341 0.0010 0.0287 0.0006 0.0147 0.0003 0.0125 0.0003 0.0083 0.0083	68.7 50.3 50.7	0.0308 0.0001 0.0175 0.0001 0.0142 0.0001 0.0076 0.0001	41.9 48.6	0.0003 0.0001 0.0015 0.0000 0.0001 0.0001	3.7 0.4	P	
B 9 0. 10 11 0 12 0. 14 15 0 16 17 0. 18 19 0 20 21 0 22 23 0 24	0.0417 0.0292 0.0247 0.0214	0.0010 0.0287 0.0006 0.0147 0.0003 0.0125 0.0003 0.0083 0.0083	68.7 50.3 50.7	0.0001 0.0175 0.0001 0.0142 0.0001 0.0076 0.0001	41.9 48.6	0.0001 0.0015 0.0000 0.0001 0.0001	3.7 0.4	P	
9 0. 10 0 11 0 12 0 13 0 14 15 15 0 16 17 18 0 20 0 21 0 22 23 0 24 24).0292).0247).0214	0.0287 0.0006 0.0147 0.0003 0.0125 0.0003 0.0083 0.0084	50.3 50.7	0.0175 0.0001 0.0142 0.0001 0.0076 0.0001	48.6	0.0015 0.0000 0.0001 0.0000	0.4	P	
10 11 0. 12 0. 13 0. 14 0. 15 0. 16 17 0. 18 0. 19 0. 20 0. 21 0. 22 23 0. 24 0.).0292).0247).0214	0.0006 0.0147 0.0003 0.0125 0.0003 0.0083 0.0083	50.3 50.7	0.0001 0.0142 0.0001 0.0076 0.0001	48.6	0.0000 0.0001 0.0000	0.4	P	
11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 20 0 21 0 22 0 23 0 24 0	0.0247 0.0214	0.0147 0.0003 0.0125 0.0003 0.0083 0.0083	50.7	0.0142 0.0001 0.0076 0.0001		0.0001			
12 13 0 14 15 0 16 17 0 18 19 0 20 21 0 22 23 0 24	0.0247 0.0214	0.0003 0.0125 0.0003 0.0083 0.0004	50.7	0.0001 0.0076 0.0001		0.0000			
13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 23 23 0 24	0.0214	0.0125 0.0003 0.0083 0.0004		0.0076	30.7		2.2		
14 15 0. 16 17 0. 18 19 0. 20 21 0. 22 23 0. 24	0.0214	0.0003 0.0083 0.0004		0.0001	30.7	0.0006	2 2	-	
15 0 16 0 17 0 18 0 20 0 21 0 22 23 0 23 0 24 24		0.0083	38.7				6 - 6	P	
16 17 0. 18 19 0 20 21 0 22 23 0 24		0.0004	38.7	0 0070		0.0000			
17 0. 18 19 0. 20 21 0. 22 23 0. 24	0.0189			0.0070	32.6	0.0002	1.1	P	
18 19 0 20 21 0 22 23 0 24	0.0189	0.0069		0.0001		0.0000			
19 0. 20 21 0 22 23 0 24		~ * * * * * *	36.6	0.0050	26.6	0.0002	1.0	P	
20 21 0 22 23 0 24		0.0004		0.0001		0.0000			
21 0 22 23 0 24	0.0169	0.0053	31.5	0.0038	22.3	0.0003	1.5	P	
22 23 0 24		0.0004		0.0001		0.0000			
23 0 24	0.0153	0.0044	28.5	0.0035	23.2	0.0001	0.6	P	
24		0.0003		0.0001		0.0000			
	0.0140	0.0038	26.9	0.0025	18.1	0.0002	1.2	P	
25 0		0.0002		0.0000		0.0000			
	0.0128	0.0030	23.3	0.0024	18.8	0.0001	0.7	P	
26		0.0002		0.0000		0.0000		_	
27 0	0.0119	0.0027	23.0	0.0020	16.8	0.0001	0.8	P	
28		0.0002		0.0000		0.0000			
	0.0111	0.0022	19.9	0.0017	14.9	0.0001	0.8	P	
30		0.0003		0.0001		0.0000		-	
	0.0104	0.0021	20.5	0.0016	15.4	0.0001	0.8	P	
32		0.0002		0.0000		0.0000		-	
	0.0097	0.0017	17.9	0.0013	12.9	0.0001	0.8	P	
34		0.0002		0.0000		0.0000			
	0.0092	0.0017	18.6	0.0012	13.1	0.0001	0.8	P	
36		0.0002		0.0000	2012	0.0000	010		
	.0087	0.0014	16.4	0.0011	12.2	0.0001	0.9	P	
38		0.0002		0.0000		0.0000	0.3		
	0.0082	0.0014	17.5	0.0010	11.5	0.0001	1.4 .	P	
40	10002	0.0002	· · · ·	0.0001	4413	0.0000	4.19	E .	1


Final Test Statistics:

Harmonic Number	Standard Limit (A rms)	Maximum Value (A rms)	Maximum Value (% Limit)	>50% of Limit (Count)	>75% of Limit (Count)	>90% of Limit (Count)	(Count)	(Count)	Pass(P) or Fail(F)
Fund.		0.3669							
2		0.0014		0	0	0	0	0	
3	0.2837	0.2579	90.9	5625	94	14	0	0	P
4		0.0018		0	0	0	0	0	- C
5	0.1585	0.1117	70.5	5625	0	0	0	0	P
6		0.0014		0	0	0	0	0	
7	0.0834	0.0341	40.8	0	0	0	0	0	P
8		0.0010		0	0	0	0	0	
9	0.0417	0.0287	68.7	170	0	0	0	0	P
10		0.0006		0	0	0	0	0	
11	0.0292	0.0147	50.3	4	0	0	0	0	P
12		0.0003		0	0	0	0	0	-
13	0.0247	0.0125	50.7	15	0	0	0	0	P
14		0.0003		0	ō	0	0	0	2
15	0.0214	0.0083	38.7	0	õ	0	0	0	P
16		0.0004	-777-74-194	0	0	0	0	0	
17	0.0189	0.0069	36.6	0	0	õ	0	õ	P
18		0.0004		0	õ	ō	0	o	-
19	0.0169	0.0053	31.5	0	0	0	0	0	P
20		0.0004		0	õ	0	0	0	
21	0.0153	0.0044	28.5	0	0	ö	0	0	P
22		0.0003		õ	ŏ	ŏ	o	0	
23	0.0140	0.0038	26.9	0	õ	ŏ	0	ő	P
24		0.0002		0	õ	ő	0	ŏ	×.
25	0.0128	0.0030	23.3	0	õ	ő	0	õ	P
26		0.0002	6.555	õ	Ő	Ő	õ	õ	15
27	0.0119	0.0027	23.0	0	0	0	0	õ	P
28) (D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C	0.0002	(TARARK	0	õ	0	0	0	
29	0.0111	0.0022	19.9	0	õ	0	ō	0	P
30		0.0003	12229923	0	0	0	0	0	17 C
31	0.0104	0.0021	20.5	0	0	0	0	0	P
32		0.0002	266.5	0	0	0	ō	0	- T
33	0.0097	0.0017	17.9	õ	õ	õ	õ	ŏ	P
34		0.0002		õ	õ	õ	õ	õ	
35	0.0092	0.0017	18.6	ő	ő	0	õ	ŏ	P
36	010092	0.0002	10.0	ŏ	ŏ	ő	õ	0	
37	0.0087	0.0014	16.4	0	ő	0	0	0	P
38	0.0007	0.0002	10.4	õ	õ	ő	ő	0	-
39	0.0082	0.0014	17.5	ő	ŏ	ő	ŏ	ő	P
40	010000	0.0002	1110	ŏ	ő	ő	ŏ	ő	

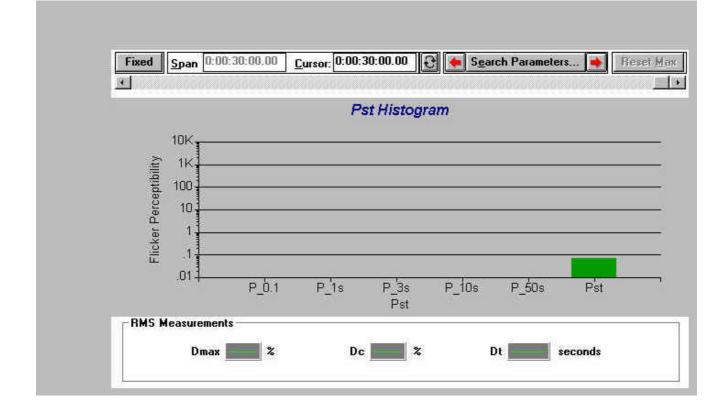
Remarks

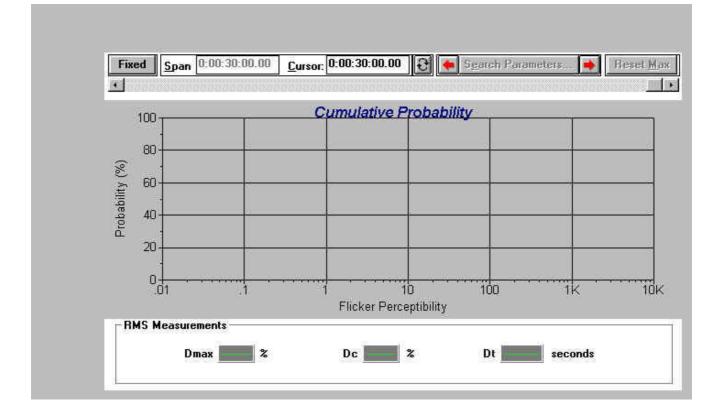
Approved by:	Bill Huang !	1,02		
Signature:	John Te	2m	Date	11-10-02
Final Test Result:	PASS			1)
Settings and Test	Conditions Compli	ant to the St	andard: Yes	
Test Equipment Use	ad:			
Agilent 6842A HFTS Software Date Last Cal	Harmonic/Flicker Version: A.05.03 ibrated:	Test System v 3	with serial :	number:
Test Equipment Set				
Line Voltage: 230 Line Frequency: 5 Measurement Delay: RMS Current Limit:	0.00 V 50 Hz : 10.0 seconds			
Overrides:				
Pst/Plt Test Limit RMS Test Limit Ove				
Equipment Under Te		ts:		
RMS Voltage: 229.8 Frequency: 50.0 Voltage THD: 0.02%	Hz	RMS Current: Peak Current: THD: 67.44%	0.7 A	Real Power: 45.1 W Apparent Power: 61.6 V. Power Factor: 0.733
Total Number of Fa	ilures:		Total Nur	mber of Errors:
Pst: 0 Plt: 0	Dc: 0 Dmax: 0 Dt: 0		Nor	ne

Final Test Summary:

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

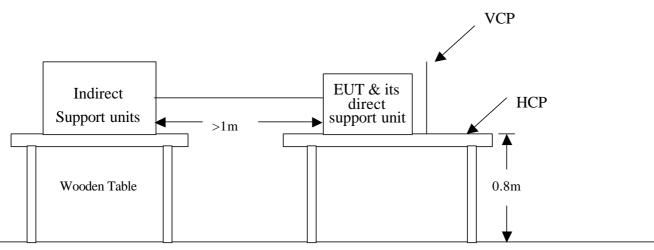
Pst: 0.07		P 0.1:	0.01
Plt: 0.07		Contraction of the second s	
Plt Threshold:	0.65	and the second s	
		P 10s:	0.01
		P 50s:	0.01
	Plt: 0.07		Plt: 0.07 P_1s:


Final Test Data by Integration Period:


Number of Integration Periods: 3

Integrati Periods	on Pst (P.U.)	P_0.1 (P.U.)	P_1.0s (P.U.)	P_3.0s (P.U.)	P_10s (P.U.)	P_50s (P.U.)	Dc (%)	Dmax (%)	(Dt (seconds)	Pass(P) or Fail(F)
l	0.07	0.01	0.01	0.01	0.01	0.01				 N/A
2	0.07	0.01	0.01	0.01	0.01	0.01				N/A
3	0.07	0.01	0.01	0.01	0.01	0.01				N/A

Remarks



SECTION 3 IEC 61000-4-2 (ELECTROSTATIC DISCHARGE)

ELECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST

Port	:	Enclosure
Basic Standard	:	IEC 61000-4-2
Requirements	:	±8 kV (Air Discharge)
		±4kV (Contact Discharge)
		±4kV (Indirect Discharge)
Performance Criteria	:	B (Standard require)
Temperature/Humidity	:	19 ⁰ C / 58%
Pressure	:	1015 mbar
Test By	:	John Yen

Block Diagram of Test Setup:

Ground Reference Plane

Test Procedure:

- 1. The EUT was located 0.1 m minimum from all side of the HCP.
- 2. The indirect support units were located 1 m minimum away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10 cm with EUT.
- 3. A communication test program was loaded and executed in Windows mode.
- 4. PC sent transmit data to remote side via EUT.
- 5. As per the requirement of EN 55024; applying direct contact discharge at the sides other than front of EUT at minimum 50 discharges (25 positive and 25 negative) if applicable, can't be applied direct contact discharge side of EUT then the indirect discharge shall be applied. One of the test points shall be subjected to at least 50 indirect discharge (contact) to the front edge of horizontal coupling plane.
- 6. Other parts of EUT where it is not possible to perform contact discharge then selecting appropriate points of EUT for air discharge, a minimum of 10 single air discharges shall be applied.
- 7. The application of ESD to the contact of open connectors is not required.
- 8. Putting a mark on EUT to show tested points. The following test condition was followed during the tests.

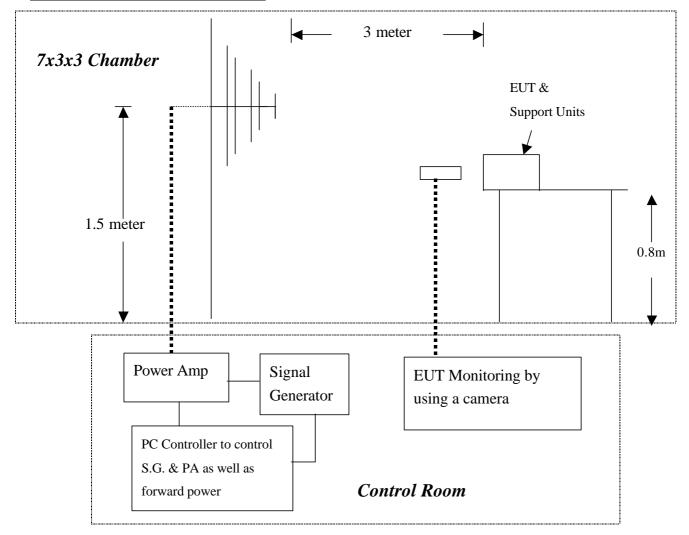
Note: As per IEC 61000-4-2:2001, with two 470k bleed resistors cable is connected between the EUT and HCP during the test applicable for power ungrounded or battery operating unit only.

y. The electrostatic disentinges were applied as renows.								
Amount of Discharges	Voltage	Coupling	Result (Pass/Fail)					
Mini 25 /Point	±4kV	Contact Discharge	Pass					
Mini 25 /Point	±4kV	Indirect Discharge HCP (Front)	Pass					
Mini 25 /Point	±4kV	Indirect Discharge VCP (Back)	Pass					
Mini 25 /Point	±4kV	Indirect Discharge VCP (Left)	Pass					
Mini 25 /Point	±4kV	Indirect Discharge VCP (Right)	Pass					
Mini 10 /Point	±8kV	Air Discharge	Pass					

9. The electrostatic discharges were applied as follows:

Performance & Result:

- Criteria A: The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
- \overline{V} **Criteria B:** The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
 - **Criteria C:** Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.


	V PASS	FAILED
Observation:	During the ±4kV Contac some bright points.	et Discharge testing, the screen produces

SECTION 4 IEC 61000-4-3 (RADIATED ELECTROMAGNETIC FIELD)

RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST

Port	Enclosure
Basic Standard	IEC 61000-4-3
Requirements	3 V/m / with 80% AM. 1kHz Modulation
Performance Criteria	A (Standard require)
Tester	John Yen
Temperature	23
Humidity	72%
Pressure	1015 mbar
Note	The EUT not have acoustic interfaces, the annex A of EN 55024
	should not be applied

Block Diagram of Test Setup:

Test Procedure:

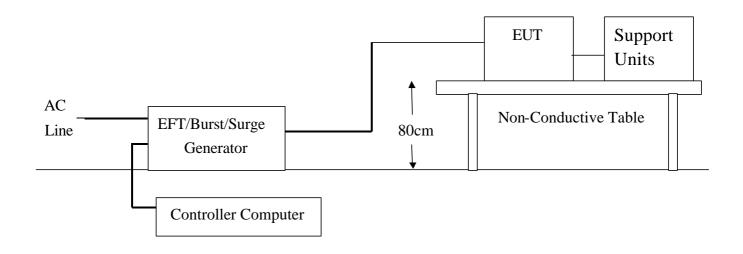
- 1. The EUT and support units were located at the edge of supporting table keep 3 meter away from transmitting antenna, it just the calibrated square area of field uniformity.
- 2. Adjusting the cables to be exposed to the electromagnetic filed as possible.
- 3. Performing a Radiated Emission Scan in range of 30 to 1000 MHz prior to do RS test and records the more higher emission frequencies for the reference of RS test, due to antenna effectiveness.
- 4. Adjusting the monitoring camera to monitor the "H" message as clear as possible.
- 5. Setting the testing parameters of RS test software per IEC 61000-4-3.
- 6. Referring to the tested data of step 3 to performing the RS test from 80 to 1000 MHz.
- 7. Recording the test result in following table.
- 8. Changing the EUT to the other side and repeat step 3 to 6, until 4 sides of EUT were verified.

Test level Steps Dwell Time	: 3V/m : 1 % of fundat : 3 sec	mental			
Range (MHz)	Field	Modulation	Polarity	Position (°)	Result (Pass/Fail)
80-1000	3V	Yes	Н	Front	Pass
80-1000	3V	Yes	V	Front	Pass
80-1000	3V	Yes	Н	Right	Pass
80-1000	3V	Yes	V	Right	Pass
80-1000	3V	Yes	Н	Back	Pass
80-1000	3V	Yes	V	Back	Pass
80-1000	3V	Yes	Н	Left	Pass
80-1000	3V	Yes	V	Left	Pass

IEC 61000-4-3 Final test conditions:

Performance & Result:

- \boxed{V} Criteria A: The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
 - **Criteria B:** The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
 - **Criteria C:** Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.


V PASS FAILED
Observation: No any function degraded during the tests.

SECTION 5 IEC 61000-4-4 (FAST TRANSIENTS/BURST)

FAST TRANSIENTS/BURST IMMUNITY TEST

Port	: On Power Lines	
Basic Standard	: IEC 61000-4-4	
Requirements	: ±1kV for Power Supply Lines	
Performance Criteria	: B (Standard require)	
Temperature	: 23 ⁰ C	
Humidity	: 58%	
Pressure	: 1015 mbar	
Test By	: John Yen	

Block Diagram of Test Setup:

Test Procedure:

- 1. The EUT and support units were located on a wooden table 0.8 m away from ground reference plane.
- 2. A 1.0 meter long power cord was attached to EUT during the test.
- 3. The length of communication cable between communication port and clamp was keeping within 1 meter.
- 4. A test program was loaded and executed in Windows mode.
- 5. The data was display on the monitor and filling the screens.
- 6. The test program exercised related support units sequentially.
- 7. Repeating step 3 to 6 through the test.
- 8. Recording the test result as shown in following table.

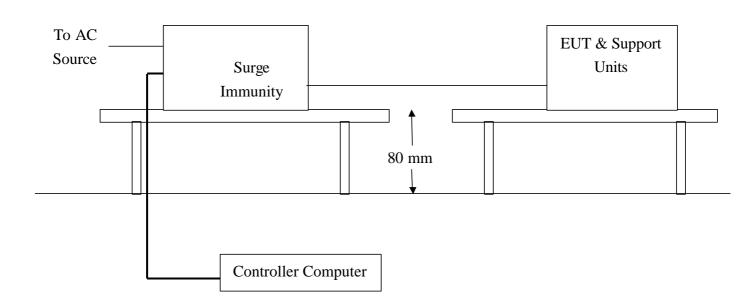
Test conditions:

Impulse Frequency: 5kHz Tr/Th: 5/50ns Burst Duration: 15ms Burst Period: 300mS

Inject Line	Voltage kV	Inject Method	Result (Pass/Fail)
L1	+/- 1	Direct	Pass
N	+/- 1	Direct	Pass
PE	+/- 1	Direct	Pass
L1+N	+/- 1	Direct	Pass
L1+PE	+/- 1	Direct	Pass
N+PE	+/- 1	Direct	Pass
L1+N+PE	+/- 1	Direct	Pass

Performance & Result:

- V Criteria A: The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
 - **Criteria B:** The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
 - **Criteria C:** Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.


V PASS	FAILED
Observation: No any function d	legraded during the tests.

SECTION 6 IEC 61000-4-5 (SURGE IMMUNITY)

SURGE IMMUNITY TEST

Port	:	Power Cord
Basic Standard	:	IEC 61000-4-5
Requirements	:	+/- 1kV (Line to Line of Power Port)
		+/- 2kV (Line to Eatrth of Power Port)
Performance Criteria	:	B (Standard require)
Tester	:	John Yen
Temperature	:	23
Humidity	:	58%
Pressure	:	1015 mbar

Block Diagram of Test Setup:

Test Procedure:

- 1. The EUT and support units were located on a wooden table 0.8 m away from ground floor.
- 2. A test program was loaded and executed in Windows mode.
- 3. The data was display on the monitor and filling the screens.
- 4. The test program exercised related support units sequentially.
- 5. Repeating step 3 to 4 through the test.
- 6. Recording the test result as shown in following table.

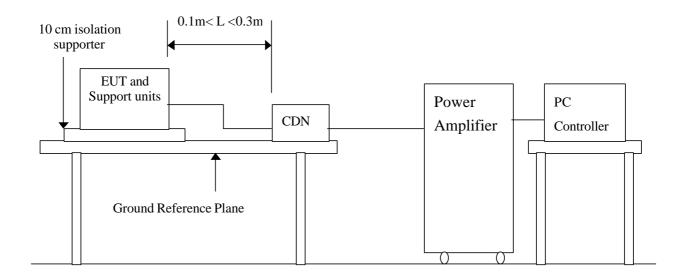
Test conditions:

Voltage Waveform	: 1.2/50 us
Current Waveform	: 8/20 us
Polarity	: Positive/Negative
Phase angle	: 0°, 90°, 270°
Number of Test	: 5

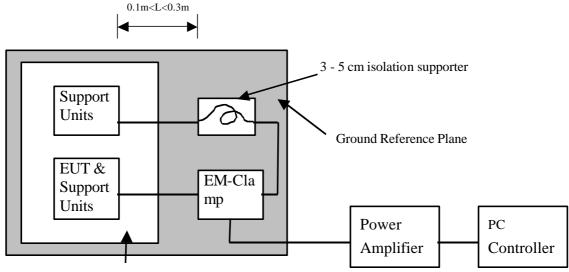
Coupling Line	Voltage (kV)	Polarity	Coupling Method	Result (Pass/Fail)
L1-L2, L1-PE, L2-PE	1	Positive	Capacitive	Pass
L1-L2、L1-PE、L2-PE	1	Negative	Capacitive	Pass
L1-PE、L2-PE	2	Positive	Capacitive	Pass
L1-PE、L2-PE	2	Negative	Capacitive	Pass

Performance & Result:

- \overline{V} Criteria A: The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
 - **Criteria B:** The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
 - Criteria C: Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.


V PASS FAILED	
Observation: No any function degraded during the tests.	

SECTION 7 IEC 61000-4-6 (CONDUCTED DISTRBANCE/INDUCED BY RADIO-FREQUENCY FIELD)


CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS

Port	: AC Port
Basic Standard	: IEC 61000-4-6
Requirements	: 3V with 80% AM. Modulation
Injection Method	: CDN-M3 for Power Cord
Performance Criteria	: A (Standard require)
Temperature	: 24 ⁰ C
Humidity	:71%
Pressure	: 1015 mbar
Test By	: John Yen

Block Diagram of Test Setup:

Top view:

10 cm isolation supporter

Test Procedure:

- 1. The EUT and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support and the CDN was located on GRP directly.
- 2. Transmit data messages were displayed on screen of Monitor.
- 3. Adjusting the monitoring camera to monitor the transmit data message as clear as possible.
- 4. Setting the testing parameters of CS test software per EN 61000-4-6.
- 5. Recording the test result in following table.

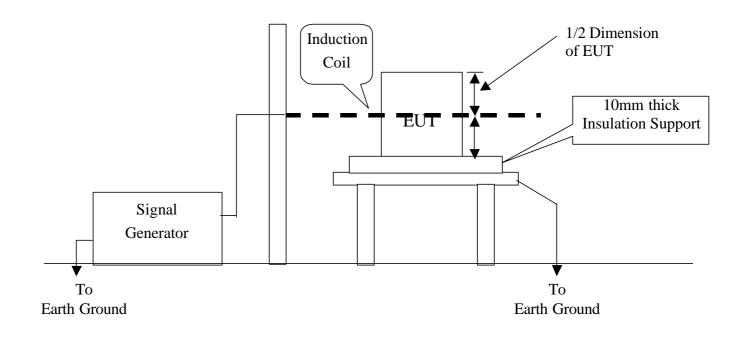
Test conditions:

Frequency Range	: 0.15MHz-80MHz
Frequency Step	: 1% of fundamental
Dwell Time	: 3 sec

Range (MHz)	Field	Modulation	Result (Pass/Fail)
0.15-80	3V	Yes	Pass

Performance & Result:

- \overline{V} Criteria A: The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
- **Criteria B:** The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
 - **Criteria C:** Temporary loss of function is allowed, provided the functions self-recoverable or can be restored by the operation of controls.


V PASS FAILED	
Observation: No any function degraded du	ring the tests.

SECTION 8 IEC 61000-4-8 (POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST)

POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

Port	: Enclosure
Basic Standard	: IEC 61000-4-8
Requirements	:1 A/m
Performance Criteria	: A (Standard Required)
Temperature	: N/A
Humidity	: N/A
Test By	: N/A

Block Diagram of Test Setup:

Test Procedure:

- The EUT and support units were located on Ground Reference Plane with the interposition of a 0.1 m thickness insulation support.
- 2. Putting the induction coil on horizontal direction.(X direction)
- 3. A test program was loaded and executed in Windows mode.
- 4. The data was sent to the screen of EUT and filling the screen with upper case of "H" patterns.
- 5. The test program exercised related support units sequentially.
- 6. Repeating step 3 to 5 through the test.
- 7. Recording the test result as shown in following table.
- 8. Rotating the induction coil by 90° (Y direction) then repeat step 3 to 7.
- 9. Rotating the induction coil by 90° again (Z direction) then repeat step 3 to 7.

*. Test conditions:	
Field Strength:	1A/m
Power Freq.:	50Hz
Orientation:	X, Y, Z

Orientation	Field	Result (Pass/Fail)	Remark

****Note:** Not applicable, because no any component can be influenced by power magnetic fields.

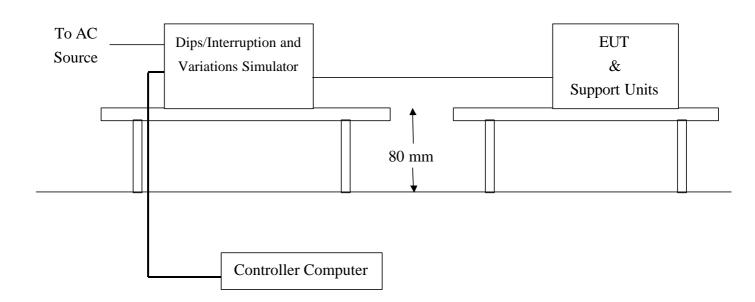
Performance & Result:

- **Criteria A:** The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
- **Criteria B:** The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- **Criteria C:** Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

Observation: N/A(EUT Without any magnetic component)

SECTION 9 IEC 61000-4-11 (VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS)

VOLTAGE DIPS / SHORT INTERRUPTIONS


Port	: AC mains
Basic Standard	: IEC 61000-4-11 (1994)
Requirement	: PHASE ANGLE 0, 45, 90, 135, 180, 225, 270, 315 degrees

VoltageTest Level% UT		Reduction (%)	Duration (periods)	Performance Criteria
Dips	<5	>95	0.5	В
	70	30	25	С

Voltage		Reduction	Duration	Performance
Interceptions		(%)	(periods)	Criteria
interceptions	<5	>95	250	С

Test Interval	: Min. 10 sec.
Temperature	: 22 ⁰ C
Humidity	: 58%
Test By	: John Yen

Block Diagram of Test Setup:

Test Procedure:

- 1. The EUT and support units were located on a wooden table, 0.8 m away from ground floor.
- 2. A test program was loaded and executed in Windows mode.
- 3. The data was displayed on the monitor and filling the screens.
- 4. The test program exercised related support units sequentially.
- 5. Setting the parameter of tests and then Perform the test software of test simulator.
- 6. Conditions changes to occur at 0 degree crossover point of the voltage waveform.
- 7. Repeating step 3 to 4 through the test.
- 8. Recording the test result in test record form.

Test conditions:

The duration with a sequence of three dips/interruptions with interval of 10s minimum (between each test events)

Voltage Dips:

Test Level % U _T	Reduction (%)	Duration (periods)	Observation	Meet Performance Criteria
0	100	0.5	Normal	А
70	30	25	Normal	А

Voltage Interruptions:

Test Level	Reduction	Duration	Observation	Meet Performance
% U _T	(%)	(periods)		Criteria
0	100	250	Host PC shut down, But	С
			EUT can be auto	
			recovered after Host PC	
			restart.	

Normal: No any functions degrade during and after the test.

Performance & Result:

- **Criteria A:** The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
- **Criteria B:** The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- **Criteria C:** Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

Report Number: 02E0620-E November 11, 2002

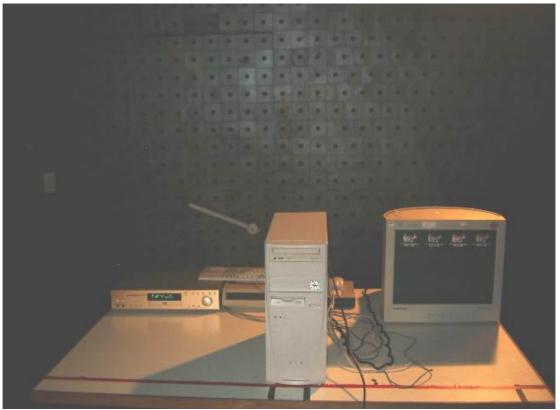
APPENDIX 1

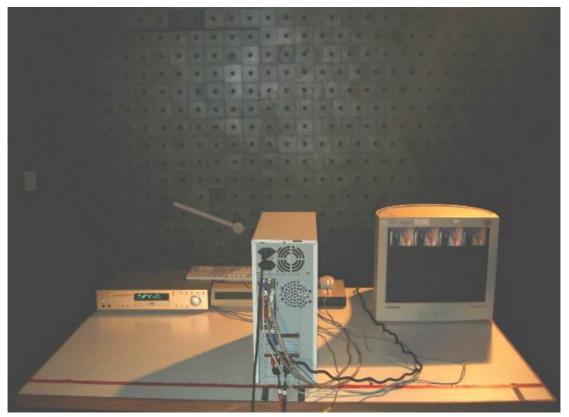
PHOTOGRAPHS OF TEST SETUP

LINE CONDUCTED EMISSION TEST (EN 55022)

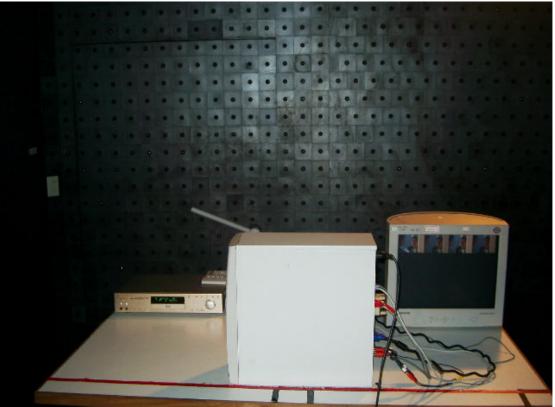
RADIATED EMISSION TEST (EN 55022)

POWER HARMONIC & VOLTAGE FLUCTUATION / FLICKER TEST (EN 61000-3-2, EN 61000-3-3)



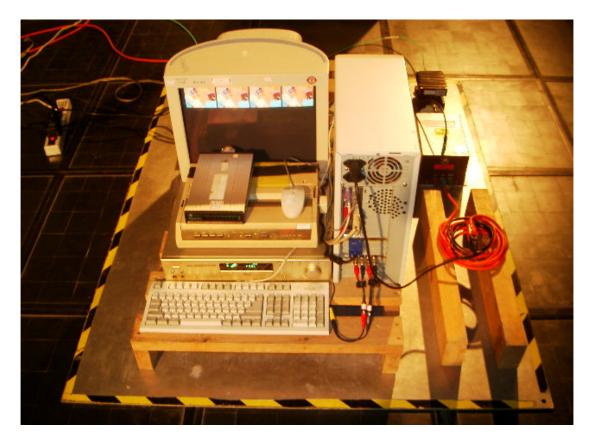

ELECTROSTATIC DISCHARGE TEST (IEC 61000-4-2)

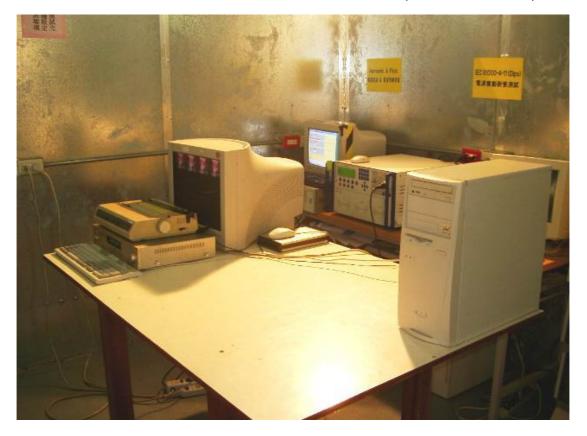
Page 53


RADIATED ELECTROMAGNETIC FIELD (IEC 61000-4-3) Front View

Back View

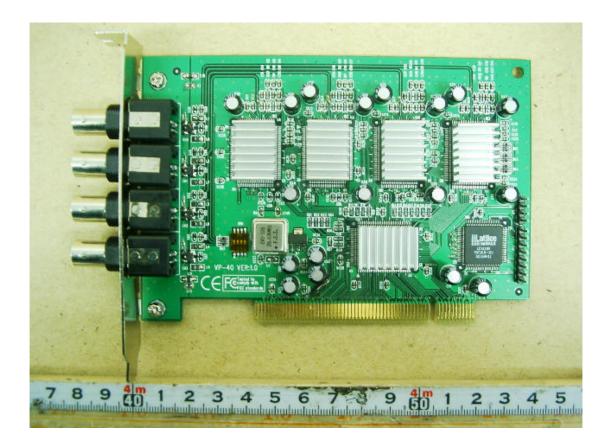

Left View

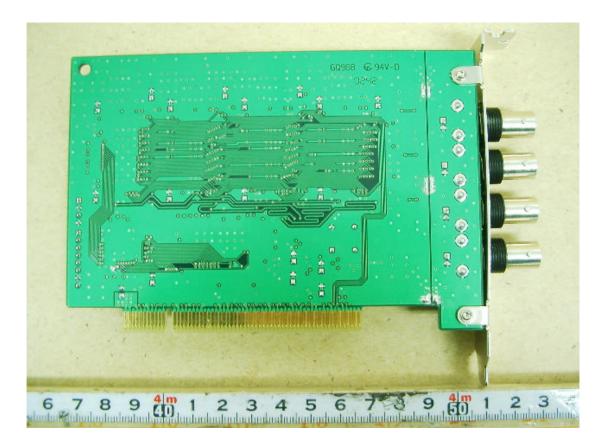

Right View

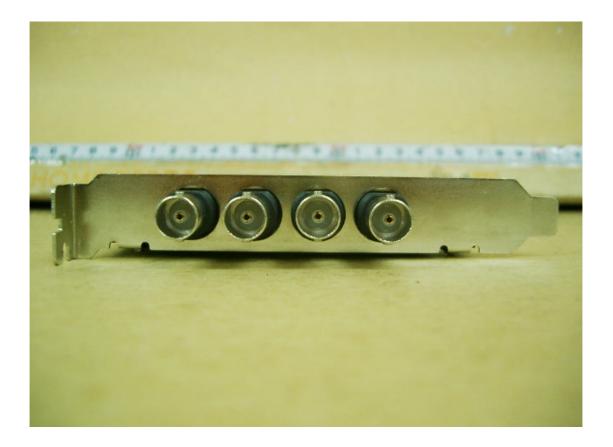


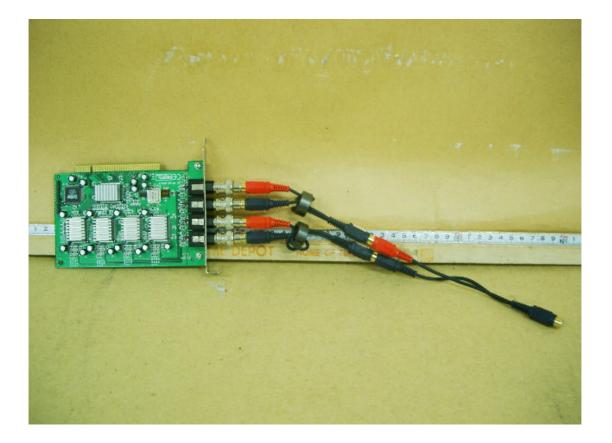
FAST TRANSIENTS/BURST TEST & SURGE IMMUNITY TEST (IEC 61000-4-4/5)

CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS TEST (IEC 61000-4-6)

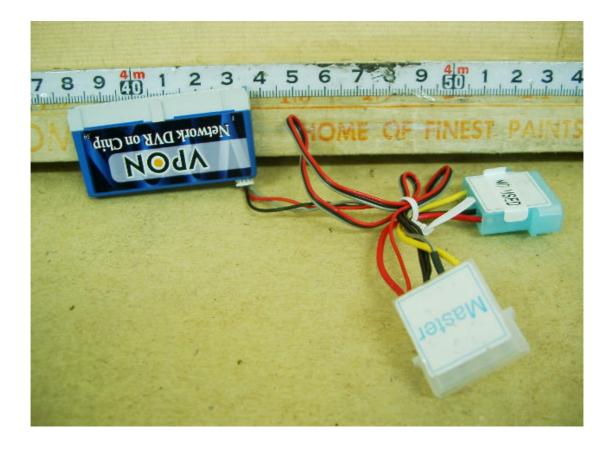




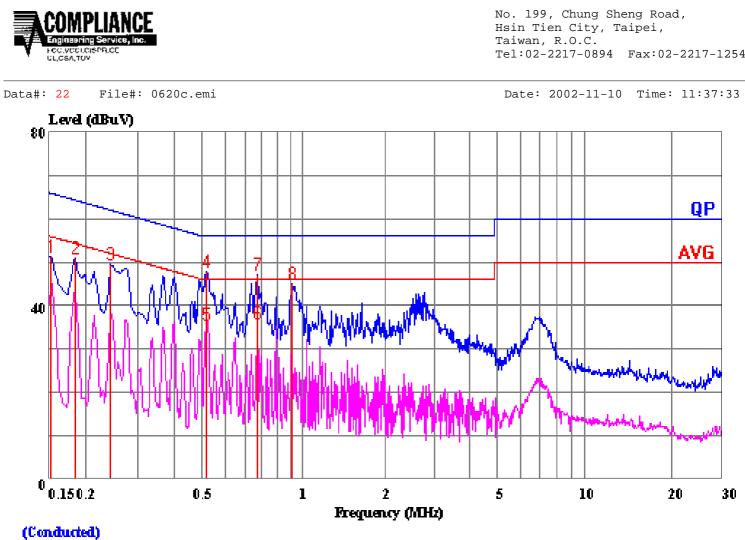

VOLTAGE DIPS / INTERRUPTION TEST (IEC 61000-4-11)


APPENDIX 2

PHOTOGRAPHS OF EUT



Page 61

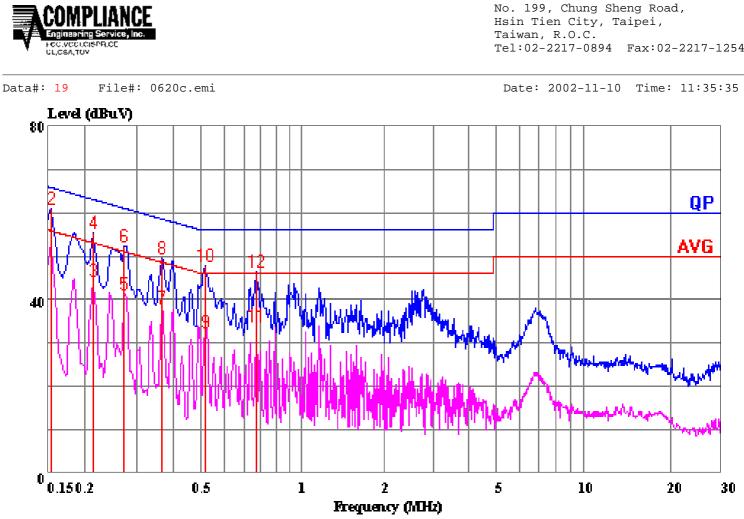


Report Number: 02E0620-E November 11, 2002

APPENDIX 3

CONDUCTED EMISSION PLOT RADIATED EMISSION DATA

Page 65


Trace: 8 7

Ref Trace:

Condition: L	INE
Report No.	: 02E0620
Test Engr.	: John Yen
Company	FORMOSA INDUSTRIAL COMPUTING, INC.
EUT	: VP-100
Test Config	EUT/ ALL PERIPHERALS
Type of Test	EN 55022 CLASS B
Mode of Op.	NORMAL MODE

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBuV	dB	dBuV	dBuV	dB	
1 2 3 4 5 6 7 8	0.152 0.183 0.243 0.516 0.516 0.771 0.771 1.016	51.07 51.02 49.37 47.57 35.73 35.99 47.12 45.07	0.03 0.03 0.04 0.07 0.07 0.09 0.09 0.10	51.10 51.05 49.41 47.64 35.80 36.08 47.21 45.17	64.33 62.00 56.00 46.00 46.00 56.00	-9.92	Peak Peak Peak Average Average Peak

Page: 1

(Conducted)

Trace: 16 15

Condition: NEUTRAL Report No. : 02E0620 Test Engr. : John Yen Company : FORMOSA INDUSTRIAL COMPUTING, INC. EUT : VP-100 Test Config : EUT/ ALL PERIPHERALS Type of Test: EN 55022 CLASS B Mode of Op. : NORMAL MODE

Limit Read Over Freq Level Factor Level Line Limit Remark MHz dBuV dB dBuV dBuV dB 0.153 52.78 0.03 52.81 55.82 -3.01 Average 1 2 0.153 60.93 0.03 60.96 65.82 -4.86 Peak 0.213 -8.65 Average 3 44.41 0.03 44.44 53.10 4 0.213 55.22 0.03 55.25 63.10 -7.84 Peak -9.73 Average 5 0.273 41.25 0.05 41.30 51.03 -8.70 Peak б 0.273 52.28 0.05 52.33 61.03 7 0.367 38.10 0.05 38.15 48.56 -10.41 Average 8 0.367 49.59 0.05 49.64 58.56 -8.92 Peak 46.00 -13.34 Average 9 0.516 32.59 0.07 32.66 10 0.516 47.57 0.07 47.64 56.00 -8.36 Peak 0.771 33.96 0.09 34.05 46.00 -11.95 Average 11 12 0.771 46.36 0.09 46.45 56.00 -9.55 Peak

Page: 1

Ref Trace:

No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1254

Data#: 1 File#: 0620d.emi D-Site Date: 2002-11-10 Time: 15:19:02

Condition: N	/EI	RTICAL
Report No.	:	02E0620
Test Engr.	:	John Yen
Company	:	FORMOSA INDUSTRIAL COMPUTING, INC.
EUT	:	VP-100
Test Config	:	EUT/ ALL PERIPHERALS
Type of Test	::	EN 55022 CLASS B
Mode of Op.	:	NORMAL MODE

raye. I		Page	:	1
---------	--	------	---	---

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1 2 3 4 5 6 7	56.730 75.744 129.030 224.380 269.987 295.050 422.280	34.81 35.69 34.62 34.73 40.59 34.45 33.11	-9.95 -13.04 -8.22 -8.71 -7.10 -5.14 -0.45	24.86 22.65 26.40 26.02 33.48 29.31 32.66	30.00 30.00 30.00 37.00 37.00 37.00	-5.14 -7.35 -3.60 -3.98 -3.52 -7.69 -4.34	Peak Peak Peak QP Peak

No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1254

Data#: 3 File#: 0620d.emi D-Site Date: 2002-11-10 Time: 16:05:34

Condition: HORIZONTAL /10m Report No. : 02E0620 Test Engr. : John Yen Company : FORMOSA INDUSTRIAL COMPUTING, INC. EUT : VP-100 Test Config : EUT/ ALL PERIPHERALS Type of Test: EN 55022 CLASS B Mode of Op. : NORMAL MODE

Page: 1

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
_	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1 2 3 4 5 6 7	55.900 75.000 140.930 222.130 270.000 295.180 454.080	32.82 35.77	-9.75 -12.81 -7.37 -8.84 -7.10 -5.14 0.37	25.33 19.69 25.45 26.93 24.65 27.41 33.04	30.00 30.00 37.00 37.00	-4.67 -10.31 -4.55 -3.07 -12.35 -9.59 -3.96	Peak Peak Peak Peak Peak